2. The hexagonal stacking is favored when the ionic radius of X is larger, *e.g.* $CsMnF_3$, $CsMnCl_3$ and $CsMnBr_3$.

3. The hexagonal stacking is favored when the ionic radius of R is larger, *e.g.* Me_4NMnCl_3 , $CsMnCl_3$ and $RbMnCl_3$; Me_4NCdCl_3 and $CsCdCl_3$.

All CsMI₃ compounds, CsCoBr₃, and RbVCl₃ can be expected to have 2*L* structures. No obvious trends are evident for the fluorides. Possible structural forms for CsTiF₃, CsVF₃ and CsCrF₃ are simple cubic percvskite (or 6*L*), 6*L* and 9*L*, respectively. CsMgF₃ is reported to be nonexistent, but the structure of Cs₄Mg₃F₁₀ [(CsMgF₃)₃.CsF_n] contains perovskite layers of (CsMgF₃)₃ groups with CsF units between the layers in agreement with (2) above. Nearly all spherical cations, such as tetramethylammonium, with an ionic radius of R larger than the cesium ion, can be expected to give structures with the 2*L* structure.

References

- ASMUSSEN, R. W. & SOLING, H. (1956). Z. Anorg. Allgem. Chem. 283, 3–12.
- BABEL, D. (1965). Z. Naturforsch. 20 A, 165-166.
- BIRGENAU, R. J., DINGLE, R., HUTCHINGS, M. T., SHIRANE, G. & HOLT, S. L. (1970). Science News, 98, 411–413.
- BIRGENAU, R. J., DINGLE, R., HUTCHINGS, M. T., SHIRANE, G. & HOLT, S. L. (1971). *Phys. Rev. Lett.* 26, 718-719.
- CROMER, D. T. (1965). Acta Cryst. 18, 17-23.
- DONOHUE, P. D., KATZ, L. & WARD, R. (1965). Inorg. Chem. 4, 306–310.
- ENGBERG, A. & SOLING, H. (1967). Acta Chem. Scand. 21, 168–174.
- GOODYEAR, J. & KENNEDY, D. J. (1972). Acta Cryst. B28, 1640-1641.
- HANSEN, H. P. & POHLER, R. F. (1966). Acta Cryst. 21, 435-437.
- INOUE, M., KISHITA, M. & KUBO, M. (1967). *Inorg. Chem.* **6**, 900–902.

- KESTIGIAN, M., CROFT, W. J. & LEIPZIG, F. D. (1967). J. Chem. Eng. Data, 12, 97–98.
- Kestigian, M., Leipzig, F. D., Croft, W. J. & Guidoboni, R. (1966). *Inorg. Chem.* 5, 1462–1463.
- LI, T. & STUCKY, G. D. (1973a). Acta Cryst. In the press.
- LI, T. & STUCKY, G. D. (1973b). Inorg. Chem. In the press.
- LONGO, J. M. & KAFALES, J. A. (1969). J. Solid-State Chem. 1, 103–108.
- MCPHERSON, G. L., KISTENMACHER, T. J., FOLKERS, J. B. & STUCKY, G. D. (1972). J. Chem. Phys. 57, 3771–3779.
- McPherson, G. L., KISTENMACHER, T. & STUCKY, G. D. (1970). J. Chem. Phys. 52, 815–824.
- MCPHERSON, G. L. & STUCKY, G. D. (1972). J. Chem. Phys. 57, 3780–3786.
- MELAMUD, M., MAKOVSKY, J. & SHAKED, H. (1971). *Phys. Rev.* B3, 3873–3877.
- MOROSIN, B. & GRAEBNER, E. J. (1967). Acta Cryst. 23, 766-770.
- MOROSIN, B. (1972). Acta Cryst. B28, 2303-2305.
- RINNEBERG, H. & HARTMAN, H. (1970). J. Chem. Phys. 52, 5814–5820.
- SCHLUETER, A. W., JACOBSON, R. A. & RUNDLE, R. E. (1966). Inorg. Chem. 5, 277–280.
- SEIFERT, H. J. (1960). Z. Anorg. Allgem. Chem. 307, 137-144.
- SEIFERT, H. J. & EHRLICH, P. (1959). Z. Anorg. Allgem. Chem. 302, 286–288.
- SEIFERT, H. J. & KLATYK, K. (1966). Z. Anorg. Allgem. Chem. 342, 1–9.
- SEIFERT, H. J. & KOKNAT, F. W. (1965). Z. Anorg. Allgem. Chem. 341, 269–280.
- SIEGEL, S. & GEBERT, E. (1964). Acta Cryst. 17, 790.
- Soling, H. (1968). Acta Chem. Scand. 22, 2793-2802.
- STUCKY, G. D. (1968). Acta Cryst. B24, 330-337.
- STUCKY, G. D., D'AGOSTINO, S. & MCPHERSON, G. L. (1966). J. Amer. Chem. Soc. 88, 4823–4831.
- TISHCHENKO, G. N. (1955). Trudy Inst. Krist. Akad. Nauk SSSR, 11, 93.
- WILLETT, R. D., DWIGGINS, C., JR, KRUH, R. F. & RUNDLE, R. E. (1963). J. Chem. Phys. 38, 2429–2436.
- ZALKIN, A., LEE, K. & TEMPLETON, D. H. (1962). J. Chem. Phys. 37, 697-699.

Acta Cryst. (1973). B29, 1335

Structure Cristalline de l'Hypovanadate CaV₄O₉

PAR JEAN-CLAUDE BOULOUX ET JEAN GALY

Service de Chimie Minérale Structurale de l'Université de Bordeaux I, associé au C.N.R.S., 351 cours de la Libération, 33405 Talence, France

(Reçu le 12 janvier 1973, accepté le 16 février 1973)

CaV₄O₉ is tetragonal with a = 8,333 and c = 5,008 Å, space group P4/n. The structure contains VO₅ square pyramids sharing edges and forming sheets of $[V_4O_9]_n^{2n-1}$ parallel to the xOy plane. Calcium atoms are inserted between the sheets in Archimedian square antiprisms. The reliability index is R = 0.038.

Au cours d'études cristallochimiques antérieures sur les phases contenant le vanadium au seul degré d'oxydation +IV, quatre hypovanadates, appartenant au système binaire CaO-VO₂, ont été synthétisés et étudiés sur le plan chimique et radiocristallographique: CaVO₃ (Chamberland & Danielson, 1971), CaV₂O₅ (Deduit, 1961; Bouloux, 1968), CaV₃O₇ (Deduit, 1961) et CaV₄O₉. La structure de CaV₃O₇ a été précisée (Bouloux & Galy, 1973). La détermination de la structure cristalline de l'hypovanadate CaV_4O_9 fait l'objet de ce mémoire.

Synthèse de CaV₄O₉

La phase CaV_4O_9 a été préparée par action à 750°C de l'oxyde de calcium CaO sur le dioxyde de vanadium VO_2 en tube de Vycor scellé sous vide. La réaction est complète après deux traitements thermiques de 18 heures. CaV₄O₉ se présente sous forme d'une poudre bien cristallisée de couleur vert clair. Vers 800°C, CaV₄O₉ se décompose suivant la réaction:

$$CaV_4O_9 \rightarrow CaV_3O_7 + VO_2$$

Obtention et étude radiocristallographique d'un monocristal

Des monocristaux de CaV₄O₉ ont été obtenus après un recuit prolongé pendant huit jours à 750 °C en tube scellé suivi d'un refroidissement lent (10°/h). Le monocristal choisi se présente sous forme d'une plaquette de très petites dimensions: $0.04 \times 0.04 \times 0.02$ mm.

Les diagrammes de Bragg et de Weissenberg effectués suivant l'axe Oz, axe perpendiculaire à la plaquette, ont permis de déterminer la symétrie et les paramètres cristallins.

CaV₄O₉ cristallise dans le système quadratique avec les paramètres: $a = 8,333 \pm 0,005$, $c = 5,008 \pm 0,003$ Å.

La seule condition d'existence relevée sur les diagrammes de Weissenberg:

$$hk0 h+k=2n$$

correspond au groupe spatial P4/n.

La densité mesurée par pycnométrie dans l'orthophtalate de diéthyle ($d_{exp} = 3,69 \pm 0,03$ g cm⁻³) implique 2 motifs CaV₄O₉ par maille ($d_x = 3,70$).

Le spectre de diffraction X est donné au Tableau 1.

Détermination de la structure

Les intensités des diverses réflexions hkl ont été mesurées à l'aide d'un diffractomètre automatique Enraf-Nonius CAD 3. Les réflexions retenues satisfont au test portant sur l'intensité mesurée: $I > \sigma(I)$. La radiation $K\alpha$ utilisée était celle d'une anticathode de molybdène rendue monochromatique grâce à une lame de graphite.

Les facteurs de diffusion relatifs au calcium, au vanadium et à l'oxygène ont été tirés ou extrapolés à partir des tables de McMaster, Kerr Del Grande, Mallet & Hubbel (1969).

La correction par le facteur de Lorentz polarisation a été effectuée.

Les calculs ont été réalisés sur IBM 360-44 à l'aide d'un programme mis au point par Saux & Galy.

L'étude de la fonction de Patterson P(u, v, w) a per-

h	k	l	$d_{obs.}(\text{\AA})$	$d_{calc.}(\text{\AA})$	I/I_o	h	k	l	$d_{obs.}(\text{\AA})$	$d_{calc.}(\text{\AA})$	I/I.
0	0	1	5,01	5,01	100	3	0	2	1,859	1,860	8
1	0	1	4,29	4,30	< 2	1	3	2	1,816	1,815	2
2	0	0	4,168	4,166	2	2	4	1	1,745	1,746	< 2
1	1	1	3,815	3,816	3	2	3	2	1,698	1,698	6
2	0	1	3,203	3,203	2	0	0	3	1,669	1,669	6
1	2	1	2,990	2,990	20	1	0	3		1,637	2
2	2	0	2,947	2,946	2	1	5	0	1,030	1,634	
1	3	0	2,635	2,635	7	1	1	3	1,605	1,606	<2
2	2	1	2,540	2,539	2	3	4	1	1 501	1,581	2
0	0	2	2,505	2,504	48	5	0	1	1,581	-	
3	0	1	2,427	2,429	<2	1	4	2	1,573	1,573	3
1	0	2	2,399	2,398	6	2	0	3	1,550	1,550	<2
1	3	1	2.331	2.332	3	1	2	3	1,524	1,523	2
Õ	2	2	2,145	2,146	<2	2	5	1	1,478	1.478	4
2	3	1	2,098	2.098	3	2	2	3	1,453	1.452	<2
4	0	0	2.083	2.083	4	3	0	3		1,431	3
1	2	2	2.078	2.078	8	3	5	0	1,429	1.429	
4	ō	1	1,923	1.923	< 2	1	3	3	1.410	1,410	5
2	2	2	1,907	1 908	2	3	4	2	1.386	1.387	-
2	4	Ō	1,863	1,863	5	5	Ó	2	}	-	<2

Tableau 1. Indexation du spectre X de poudre de CaV_4O_9

Tableau 2. Coordonnées réduites des atomes dans CaV₄O₉

	$x(\delta x)$	<i>y</i> (δ <i>y</i>)	$z(\delta z)$	$B(\text{\AA}^2) (\delta B)$	Positions
Ca	1	ł	0,1674 (14)	0,65 (11)	2(c)
v	0,1584 (3)	0,5366 (3)	0,6256 (5)	0,33 (4)	8(g)
O(1)	0.044 (2)	0.357 (2)	0,464 (2)	0,58 (18)	8(g)
O(2)	0.177(2)	0.499 (2)	0,939 (2)	1,01 (20)	8(g)
O(3)	4	34	$\frac{1}{2}$	0,66 (40)	2 (b)

mis de déterminer la position des deux atomes 'lourds', le calcium et le vanadium:

Ca : position à 2 équivalents 2(c); $\frac{1}{4}, \frac{1}{4}, z$ avec z=0,16V : position à 8 équivalents 8(g); x, y, z avec x=0,15y=0.55 et z=0.62.

A partir de ces coordonnées réduites, un calcul de facteurs de structure montre un assez bon accord entre F_o et F_c ; l'indice R=0,24.

Les coordonnées réduites des trois atomes d'oxygène O(1), O(2) et O(3) en positions indépendantes ont été déduites de la carte de densité électronique $\varrho(xyz)$ obtenue par application de la méthode de l'atome lourd. L'indice *R* est alors égal à 0,09. Les oxygènes O(1) et O(2) occupent des positions x, y, z à 8 équivalents 8 (g), O(3) une position particulière $\frac{1}{4}, \frac{3}{4}, \frac{1}{2}$ à 2 équivalents 2(b).

Affinement de la structure

Après plusieurs cycles d'affinement à l'aide d'une méthode utilisant les blocs diagonaux, l'indice R prend la

Tableau 3. Distances interatomiques dans CaV_4O_9 (erreur maximale ± 0.02 Å)

CaV	3,40 Å	V——O(2)	1·61 Å
Ca-V'	3.98	V——O(2')	3,78
V—V′	3,01	O(1) - O(1')	2,74
4Ca-O(1)	2.44	O(1') - O(3)	2,61
4Ca-O(2')	2,45	O(1) - O(1'')	2,52
V = O(1)	1,95	O(2) - O(1)	2,88
V - O(1')	1,96	O(2) - O(1')	2,84
V - O(3)	2,03	O(2) - O(3)	3,10
V = O(1'')	1 96	O(2) - O(1'')	2.99

valeur 0,038 pour l'ensemble des 268 réflexions *hkl* mesurées.

Les coordonnées réduites et les facteurs d'agitation thermique isotropes sont donnés au Tableau 2, les distances interatomiques au Tableau 3.*

Description de la structure et discussion

Nous avons représenté à la Fig. 1 la projection du réseau de CaV_4O_9 sur le plan xOy.

Chaque atome de vanadium est entouré de cinq atomes d'oxygène formant une pyramide à base carrée déformée. Les sommets de ces pyramides occupent des positions alternées par rapport à un plan oxygéné parallèle à xOy formé par mise en commun d'arêtes de base, donnant naissance ainsi à des feuillets de composition $(V_4O_9)_n^{2n-}$. Dans ces feuillets, les pyramides sont groupées par quatre suivant les directions [310] et [130]. Les distances V-O(1), comprises entre 1,95 Å et 2,03 Å, sont nettement plus longues que la distance V-O(2) (1,61 Å). Ces distances V-O sont d'ailleurs très voisines de celles observées dans l'hypovanadate CaV₃O₇. Un sixième atome d'oxygène O(2') est beaucoup plus éloigné du vanadium [V-O(2')=3,78 Å], im-

* La liste des facteurs de structure observés et calculés a été déposée au dépôt d'archives de la National Lending Library, Angleterre (Supplementary Publication No. SUP 30077). Des copies peuvent être obtenues en s'adressant à The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1 NZ, Angleterre.

Fig. 1. Projection de la structure de CaV_4O_9 sur le plan xOy.

pliquant bien pour celui-ci non pas un environnement octaédrique mais un environnement pyramidal à base carrée.

Fig. 2. Environnement oxygéné du calcium dans CaV₄O₉.

Acta Cryst. (1973). B29, 1338

La coordinence du calcium est 8. Il s'insère entre les feuillets de composition $(V_4O_9)_n^{2n-}$. Les atomes d'oxygène liés au calcium se répartissent en nombre égal entre deux feuillets successifs; l'environnement oxygéné forme un antiprisme d'Archimède carré (Fig. 2).

Les distances Ca–O sont pratiquement égales (2,44 et 2,45 Å) mais sont légèrement supérieures à celles observées dans CaV_3O_7 où la coordinence du calcium était seulement [6+1].

Références

- BOULOUX, J. C. (1968). Thèse 3e cycle, Univ. de Bordeaux.BOULOUX, J. C. & GALY, J. (1973). Acta Cryst. B29, 269–275.
- CHAMBERLAND, B. L. & DANIELSON, P. S. (1971). J. Solid State Chem. 3, 243-247.
- DEDUIT, J. (1961). Ann. Chem. 6, 163-192.
- MCMASTER, W. H., KERR DEL GRANDE, N., MALLET, J. H. & HUBBEL, J. H. (1969). Natl. Bur. Stand. Compilation
- of X-ray Cross Sections UCRL-50174, Sec. II, Rev. 1.

BY R.D. SHANNON* AND C. CALVO

Crystal Structure of Cu₅V₂O₁₀

Institute for Materials Science, McMaster University Hamilton, Ontario, Canada

(Received 3 November 1972; accepted 21 February 1973)

Cu₅V₂O₁₀ is monoclinic with a = 8.393 (2), b = 6.0652 (8), c = 16.156 (3) Å, $\beta = 108.09$ (2)°, Z = 4, and space group $P_{2_1/c}$. The crystal structure was refined by full-matrix least-squares analysis to a wR = 0.032using 1629 reflexions measured on a Syntex automatic diffractometer. The structure consists of a network made up of double chains of Cu–O₆ octahedra running parallel to **b** and chains formed from Cu–O₆ octahedra and Cu–O₅ trigonal bipyramids running parallel to **c**. These chains are linked to each other by edge sharing of the octahedra and trigonal bipyramids and corner sharing of the V(2)O₄ tetrahedra. Two such networks at $x \simeq \frac{1}{4}$ and $\frac{3}{4}$ are linked by the V(1)O₄ tetrahedra. Cu(1) and Cu(2) are octahedrally coordinated by oxygen atoms and show typical Jahn–Teller distortion. Cu(4) is also octahedrally coordinated but has an unusual distortion in which one equatorial and one apical, rather than 2 apical Cu–O bonds, are elongated. The mean Cu–O distances differ significantly for the three octahedra. These differences and those in other Cu-containing oxides are related to the degree of distortion of the octahedra. Cu(3) and Cu(5) are each surrounded by five oxygen atoms in the form of distorted trigonal bipyramids. The apical bonds are shorter than the equatorial bonds as in Cu₂OSO₄, Cu₃As₂O₈ and Cu₃WO₆. The differences in individual V–O distances are related to the bond-strength sums around the oxygen atoms.

Introduction

Brisi & Molinari (1958) and Fleury (1966, 1969) reported the synthesis of $Cu_5V_2O_{10}$, an incongruently melting compound in the $CuO-V_2O_5$ system. Fleury concluded from magnetic susceptibility measurements that $Cu_5V_2O_{10}$ contained divalent Cu but no structural information was given. We were interested in this compound in connexion with a study of interatomic distances in vanadates containing a large proportion of electronegative ions, *e.g.* compounds such as $Cu_3V_2O_8$ (Shannon & Calvo, 1972) and $Pb_2V_2O_7$ (Shannon & Calvo, 1973*a*). In this paper we report the single crystal synthesis and structure refinement of $Cu_5V_2O_{10}$.

Experiments

Crystals of $Cu_5V_2O_{10}$ were grown from a KVO₃ melt. Starting materials were reagent grade CuO, V_2O_5 and K_2CO_3 . A 10 g batch with the composition 5.0 CuO: $1.0 V_2O_5:6.0 \text{ KVO}_3$ was placed in a Pt crucible, heated

^{*} On leave of absence from the Central Research Dept., E. I. du Pont de Nemours, Wilmington, Delaware, U.S.A.